Cart (Loading....) | Create Account
Close category search window
 

An Ant-Colony-Optimization Based Approach for Determination of Parameter Significance of Scientific Workflows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khan, F.A. ; Dept. of Sci. Comput., Univ. of Vienna, Vienna, Austria ; Yuzhang Han ; Pllana, S. ; Brezany, P.

In the process of a scientific experiment a workflow is executed multiple times using various values of the parameters of activities. For real-world workflows that may contain hundreds of activities, each having several parameters, it is practically not feasible to conduct a parameter sensitivity study by simply following a ”brute-force approach” (that is experimental evaluation of all possible cases). We believe that a heuristic-guided approach enables to find a near-optimal solution using a reasonable amount of resources without the need for the evaluation of all possibilities. In this paper we present a novel methodology for determination of parameter significance of scientific workflows that is based on Ant Colony Optimization (ACO). We refer to our methodology, which is a customization of ACO for Parameter Significance determination, as ACO4PS. We use ACO4PS to identify (1) which parameter strongly affects the overall result of the workflow and (2) for which combination of parameter values we obtain the expected result. ACO4PS generates a list of all workflow parameters sorted by significance as well as is capable of generating a subset of significant parameters. We empirically evaluate our methodology using a real-world scientific workflow that deals with the Non-Invasive Glucose Measurement.

Published in:

Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on

Date of Conference:

20-23 April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.