By Topic

New Approach to Quantification of Privacy on Social Network Sites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tran Hong Ngoc ; Fac. of Inf. Technol., Univ. of Sci., Ho Chi Minh City, Vietnam ; Isao Echizen ; Kamiyama Komei ; Hiroshi Yoshiura

Users may unintentionally reveal private information to the world on their blogs on social network sites (SNSs). Information hunters can exploit such disclosed sensitive information for the purpose of advertising, marketing, spamming, etc. We present a new metric to quantify privacy, based on probability and entropy theory. Simply by relying on the total leaked privacy value calculated with our metric, users can adjust the amount of information they reveal on SNSs. Previous studies focused on quantifying privacy for purposes of data mining and location finding. The privacy metric in this paper deals with unintentional leaks of information from SNSs. Our metric helps users of SNSs find how much privacy can be preserved after they have published sentences on their SNSs. It is simple, yet precise, which is proved through an experimental evaluation.

Published in:

2010 24th IEEE International Conference on Advanced Information Networking and Applications

Date of Conference:

20-23 April 2010