By Topic

Multi-View Clustering with Web and Linguistic Features for Relation Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yulan Yan ; Univ. of Tokyo, Tokyo, Japan ; Haibo Li ; Matsuo, Y. ; Zhenglu Yang
more authors

Binary semantic relation extraction is particularly useful for various NLP and Web applications. Currently Web-based methods and Linguistic-based methods are two types of leading methods for semantic relation extraction task. With a novel view on integrating linguistic analysis on local text with Web frequent information, we propose a multi-view co-clustering approach for semantic relation extraction. One is feature clustering by automatically learning clustering functions for Web features, linguistic features simultaneously based on a subset of entity pairs. The other is relation clustering, using the feature clustering functions to define learning function for relation extraction. Our experiments demonstrate the superiority of our clustering approach comparing with several state-of-the-art clustering methods.

Published in:

Web Conference (APWEB), 2010 12th International Asia-Pacific

Date of Conference:

6-8 April 2010