By Topic

ParaCube: A Scalable OLAP Model Based on Distributed Aggregate Computing with Sibling Cubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yansong Zhang ; Key Lab. of the Minist. of Educ. for Data Eng. & Knowledge Eng., Beijing, China ; Shan Wang ; Wei Huang

The requirements of OLAP applications increase rapidly by dramatically increased data volume, users, query volume and query complexity. The requirement for shortening update period in data warehouse is another crucial factor for a scalable OLAP application. In this paper, we propose a scalable OLAP prototype to support the query processing with increasing data volume by distributing the whole fact tuples to multiple servers to construct a set of sibling cubes which can be merged together to obtain the whole cube. We employ a light weight distribution policy with fully duplicated dimension tables in each sibling server on the observation of very low proportion of space cost for dimension tables. OLAP query with distributed aggregate functions can be transformed into queries to be performed parallel in sibling servers. For non-distributed computing aggregate functions, such as median, the optimized median aggregate computing algorithm is proposed to reduce transmission volume between servers while computing the global median values. We also present a three-level framework in data warehouse to meet the requirement of shorter update period in "operational business intelligence". An asynchronous tunnel model is proposed to reduce update latency by pre-fetching updated tuples to OLAP processing server. Finally, we set up prototype system ParaCube to evaluate performance in SN (shared-nothing) system and multi-core platforms.

Published in:

Web Conference (APWEB), 2010 12th International Asia-Pacific

Date of Conference:

6-8 April 2010