Cart (Loading....) | Create Account
Close category search window
 

Fast and Efficient FPGA-Based Feature Detection Employing the SURF Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bouris, D. ; Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania, Greece ; Nikitakis, A. ; Papaefstathiou, I.

Feature detectors are schemes that locate and describe points or regions of `interest' in an image. Today there are numerous machine vision applications needing efficient feature detectors that can work on Real-time; moreover, since this detection is one of the most time consuming tasks in several vision devices, the speed of the feature detection schemes severally affects the effectiveness of the complete systems. As a result, feature detectors are increasingly being implemented in state-of-the-art FPGAs. This paper describes an FPGA-based implementation of the SURF (Speeded-Up Robust Features) detector introduced by Bay, Ess, Tuytelaars and Van Gool; this algorithm is considered to be the most efficient feature detector algorithm available. Moreover, this is, to the best of our knowledge, the first implementation of this scheme in an FPGA. Our innovative system can support processing of standard video (640 x 480 pixels) at up to 56 frames per second while it outperforms a state-of-the-art dual-core Intel CPU by at least 8 times. Moreover, the proposed system, which is clocked at 200 MHz and consumes less than 20W, supports constantly a frame rate only 20% lower than the peak rate of a high-end GPU executing the same basic algorithm; the specified GPU consists of 128 floating point CPUs, clocked at 1.35 GHz and consumes more than 200W.

Published in:

Field-Programmable Custom Computing Machines (FCCM), 2010 18th IEEE Annual International Symposium on

Date of Conference:

2-4 May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.