By Topic

Efficient algorithm for optimal force distribution-the compact-dual LP method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fan-Tien Cheng ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Orin, D.E.

An efficient algorithm, the compact-dual linear programming (LP) method, is presented to solve the force distribution problem. In this method, the general solution of the linear equality constraints is obtained by transforming the underspecified matrix into row-reduced echelon form; then, the linear equality constraints of the force distribution problem are eliminated. In addition, the duality theory of linear programming is applied. The resulting method is applicable to a wide range of systems, constraints, and objective functions and yet is computationally efficient. The significance of this method is demonstrated by solving the force distribution problem of a grasping system under development at Ohio State called DIGITS. With two fingers grasping an object and hard point contact with friction considered, the CPU time on a VAX-11/785 computer is only 1.47 ms. If four fingers are considered and a linear programming package in the IMSL library is utilized, the CPU time is then less than 45 ms

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:6 ,  Issue: 2 )