By Topic

Efficient Extraction of Protein-Protein Interactions from Full-Text Articles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Hakenberg, J. ; Dept. of Comput. Sci., Arizona State Univ., Tempe, AZ, USA ; Leaman, R. ; Nguyen Ha Vo ; Jonnalagadda, S.
more authors

Proteins and their interactions govern virtually all cellular processes, such as regulation, signaling, metabolism, and structure. Most experimental findings pertaining to such interactions are discussed in research papers, which, in turn, get curated by protein interaction databases. Authors, editors, and publishers benefit from efforts to alleviate the tasks of searching for relevant papers, evidence for physical interactions, and proper identifiers for each protein involved. The BioCreative II.5 community challenge addressed these tasks in a competition-style assessment to evaluate and compare different methodologies, to make aware of the increasing accuracy of automated methods, and to guide future implementations. In this paper, we present our approaches for protein-named entity recognition, including normalization, and for extraction of protein-protein interactions from full text. Our overall goal is to identify efficient individual components, and we compare various compositions to handle a single full-text article in between 10 seconds and 2 minutes. We propose strategies to transfer document-level annotations to the sentence-level, which allows for the creation of a more fine-grained training corpus; we use this corpus to automatically derive around 5,000 patterns. We rank sentences by relevance to the task of finding novel interactions with physical evidence, using a sentence classifier built from this training corpus. Heuristics for paraphrasing sentences help to further remove unnecessary information that might interfere with patterns, such as additional adjectives, clauses, or bracketed expressions. In BioCreative II.5, we achieved an f-score of 22 percent for finding protein interactions, and 43 percent for mapping proteins to UniProt IDs; disregarding species, f-scores are 30 percent and 55 percent, respectively. On average, our best-performing setup required around 2 minutes per full text. All data and pattern sets as well as Java classes that extend- - third-party software are available as supplementary information (see Appendix).

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 3 )