By Topic

Electromagnetic Modeling of Multiwalled Carbon Nanotubes as Nanorod Electrodes for Optimizing Device Geometry in a Nanophotonic Device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Butt, Haider ; Dept. of Eng., Univ. of Cambridge, Cambridge, UK ; Rajasekharan, R. ; Wilkinson, T.D. ; Amaratunga, G.

We present electric-field modeling of carbon nanotubes (CNTs) as nanorods to optimize electrode geometry in a light-modulating nanophotonic device based on CNTs and liquid crystals. The electric fields spawned by the nanotube electrodes are used to align the liquid crystal molecules to generate a gradient refractive-index profile. We considered an array of CNTs on a 2-D conducting substrate. Different geometries were realized by choosing one, two, three, and four CNTs at each point. The static electric fields produced by these different geometries were simulated. Our results show that the “four nanotube” groups generated a wide and symmetrical electric field as compared to other geometries. We have verified the simulation results by experimentally fabricating the nanophotonic device and found that the “four nanotube” groups formed a negative lens array in the liquid crystal cell with enhanced performance.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:10 ,  Issue: 3 )