By Topic

Bridging the Semantic Gap Between Image Contents and Tags

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hao Ma ; department of Computer Science and Engineering, at the Chinese University of Hong Kong ; Jianke Zhu ; Michael Rung-Tsong Lyu ; Irwin King

With the exponential growth of Web 2.0 applications, tags have been used extensively to describe the image contents on the Web. Due to the noisy and sparse nature in the human generated tags, how to understand and utilize these tags for image retrieval tasks has become an emerging research direction. As the low-level visual features can provide fruitful information, they are employed to improve the image retrieval results. However, it is challenging to bridge the semantic gap between image contents and tags. To attack this critical problem, we propose a unified framework in this paper which stems from a two-level data fusions between the image contents and tags: 1) A unified graph is built to fuse the visual feature-based image similarity graph with the image-tag bipartite graph; 2) A novel random walk model is then proposed, which utilizes a fusion parameter to balance the influences between the image contents and tags. Furthermore, the presented framework not only can naturally incorporate the pseudo relevance feedback process, but also it can be directly applied to applications such as content-based image retrieval, text-based image retrieval, and image annotation. Experimental analysis on a large Flickr dataset shows the effectiveness and efficiency of our proposed framework.

Published in:

IEEE Transactions on Multimedia  (Volume:12 ,  Issue: 5 )