By Topic

Flexible Dynamic Block Adaptive Quantization for Sentinel-1 SAR Missions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Attema, E. ; ESA-ESTEC, Noordwijk, Netherlands ; Cafforio, C. ; Gottwald, M. ; Guccione, P.
more authors

The letter introduces a novel quantizer suited for medium to high-resolution synthetic aperture radar (SAR) systems, like the forthcoming SENTINEL-1 SAR. The Flexible Dynamic Block Adaptive Quantization (FDBAQ) extends the concept of the Block Adaptive Quantization (BAQ), used in spaceborne SAR since the Magellan mission, by adaptively tuning the quantizer rate according to the local signal-to-noise-ratio (SNR). A design is presented aiming to optimize the average bit-rate, while constraining the minimum SNR. FDBAQ optimized performance is then evaluated using backscatter maps derived from ENVIronment SATellite (ENVISAT) data.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:7 ,  Issue: 4 )