We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Quality-Based Conditional Processing in Multi-Biometrics: Application to Sensor Interoperability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alonso-Fernandez, F. ; ATVS/Biometric Recognition Group, Univ. Autonoma de Madrid, Madrid, Spain ; Fierrez, J. ; Ramos, D. ; Gonzalez-Rodriguez, J.

As biometric technology is increasingly deployed, it will be common to replace parts of operational systems with newer designs. The cost and inconvenience of reacquiring enrolled users when a new vendor solution is incorporated makes this approach difficult and many applications will require to deal with information from different sources regularly. These interoperability problems can dramatically affect the performance of biometric systems and thus, they need to be overcome. Here, we describe and evaluate the ATVS-UAM fusion approach submitted to the quality-based evaluation of the 2007 BioSecure Multimodal Evaluation Campaign, whose aim was to compare fusion algorithms when biometric signals were generated using several biometric devices in mismatched conditions. Quality measures from the raw biometric data are available to allow system adjustment to changing quality conditions due to device changes. This system adjustment is referred to as quality-based conditional processing. The proposed fusion approach is based on linear logistic regression, in which fused scores tend to be log-likelihood-ratios. This allows the easy and efficient combination of matching scores from different devices assuming low dependence among modalities. In our system, quality information is used to switch between different system modules depending on the data source (the sensor in our case) and to reject channels with low quality data during the fusion. We compare our fusion approach to a set of rule-based fusion schemes over normalized scores. Results show that the proposed approach outperforms all the rule-based fusion schemes. We also show that with the quality-based channel rejection scheme, an overall improvement of 25% in the equal error rate is obtained.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:40 ,  Issue: 6 )
Biometrics Compendium, IEEE