By Topic

Uncertainty Analysis for the Classification of Multispectral Satellite Images Using SVMs and SOMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Giacco, F. ; Dept. of Phys., Univ. of Salerno, Salerno, Italy ; Thiel, C. ; Pugliese, L. ; Scarpetta, S.
more authors

Classification of multispectral remotely sensed data with textural features is investigated with a special focus on uncertainty analysis in the produced land-cover maps. Much effort has already been directed into the research of satisfactory accuracy-assessment techniques in image classification, but a common approach is not yet universally adopted. We look at the relationship between hard accuracy and the uncertainty on the produced answers, introducing two measures based on maximum probability and α quadratic entropy. Their impact differs depending on the type of classifier. In this paper, we deal with two different classification strategies, based on support vector machines (SVMs) and Kohonen's self-organizing maps (SOMs), both suitably modified to give soft answers. Once the multiclass probability answer vector is available for each pixel in the image, we studied the behavior of the overall classification accuracy as a function of the uncertainty associated with each vector, given a hard-labeled test set. The experimental results show that the SVM with one-versus-one architecture and linear kernel clearly outperforms the other supervised approaches in terms of overall accuracy. On the other hand, our analysis reveals that the proposed SOM-based classifier, despite its unsupervised learning procedure, is able to provide soft answers which are the best candidates for a fusion with supervised results.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 10 )