By Topic

Contribution of Oxygen Reduction to Charge Injection on Platinum and Sputtered Iridium Oxide Neural Stimulation Electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The extent to which oxygen reduction occurs on sputtered iridium oxide (SIROF) and platinum neural stimulation electrodes was quantified by cyclic voltammetry and voltage-transient measurements in oxygen-saturated physiological saline. Oxygen reduction was the dominant charge-admittance reaction on platinum electrodes during slow-sweep-rate cyclic voltammetry, contributing ~12 mC/cm2 (88% of total charge) to overall cathodal charge capacity. For a 300-nm-thick SIROF electrode, oxygen reduction was a minor reaction contributing 1.3 mC/cm2, ~3% of total charge. During current pulsing with platinum electrodes, oxygen reduction was observed at a level of 7% of the total injected charge. There was no indication of oxygen reduction on pulsed SIROF electrodes. A sweep-rate-dependent contribution of oxygen reduction was observed on penetrating SIROF microelectrodes (nominal surface area 2000 μm2) and is interpreted in terms of rate-limited diffusion of oxygen in electrolyte that penetrates the junction between the insulation and electrode shaft. For typical neural stimulation pulses, no oxygen reduction could be observed on penetrating SIROF microelectrodes. Based on the in vivo concentration of dissolved oxygen, it is estimated that oxygen reduction on platinum microelectrodes will contribute less than 0.5% of the total injected charge and considerably less on SIROF electrodes.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:57 ,  Issue: 9 )