By Topic

Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Rodriguez-Barrios, F. ; Consejo Super. de Investig. Cientificas (CSIC), Inst. de Fis. Aplic., Madrid, Spain ; Martin-Lopez, S. ; Carrasco-Sanz, A. ; Corredera, P.
more authors

Distributed optical fiber Brillouin sensors provide innovative solutions for the monitoring of temperature and strain in large structures. The effective range of these sensors is typically of the order of 20-30 km, which limits their use in certain applications in which the distance to monitor is larger. In this work, we have developed a new technique to significantly extend the measurement distance of a distributed Brillouin Optical Time-Domain Analysis (BOTDA) sensor. Distributed Raman Amplification in the sensing fiber provides the means to enhance the operating range of the setup. Three Raman pumping configurations are theoretically and experimentally investigated: co-propagating, counter-propagating and bidirectional propagation with respect to the Brillouin pump pulse. We show that some of the amplification schemes tested can extend the measurement range and improve the measurement quality over long distances.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 15 )