Cart (Loading....) | Create Account
Close category search window

Higher-order eigenmodes of qPlus sensors for high resolution dynamic atomic force microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tung, Ryan C. ; School of Mechanical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA ; Wutscher, Thorsten ; Martinez-Martin, David ; Reifenberger, Ronald G.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The time response of tuning-fork based sensors can be improved by operating them at higher eigenmodes because a measurement takes at least one oscillation cycle in dynamic force microscopy and the oscillation period of the second eigenmode is only about one sixth of the fundamental mode. Here we study the higher-order eigenmodes of quartz qPlus sensors [Bettac etal, Nanotechnology 20, 264009 (2009); Giessibl and Reichling, Nanotechnology 16, S118 (2005); Giessibl, Appl. Phys. Lett. 76, 1470 (2000); and Giessibl, Appl. Phys. Lett. 73, 3956 (1998)], their equivalent stiffness, and piezoelectric sensitivity, while paying special attention to the influence of the mass and rotary inertia of the sensing tip which is attached to the end of the qPlus quartz cantilever. A combination of theoretical modeling and scanning laser Doppler vibrometry is used to study the eigenmodes of qPlus sensors with tungsten tips. We find that the geometry of tungsten tips can greatly influence the shape, equivalent stiffness, and piezoelectric sensitivity of the second eigenmode of the quartz cantilever. At a critical tip length it is possible to theoretically achieve infinite equivalent stiffness and infinite piezoelectric sensitivity when the tip becomes a perfect node of vibration and beyond this critical tip length the second eigenmode loses its vibration node and the trajectory of the tip reverses with respect to the beam curvature. The findings have major implications for optimizing tip geometry for high-resolution imaging with qPlus sensors using higher eigenmodes.

Published in:

Journal of Applied Physics  (Volume:107 ,  Issue: 10 )

Date of Publication:

May 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.