By Topic

Single antenna physical layer collision recover receivers for RFID readers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Angerer, C. ; Inst. of Commun. & Radio-Freq. Eng., Vienna Univ. of Technol., Vienna, Austria ; Maier, G. ; Bueno Delgado, M.V. ; Rupp, M.
more authors

Radio Frequency Identification (RFID) systems often are operated in environments with multiple RFID tags. In such an environment, a conventional RFID system resolves collisions of multiple tags on the medium access control layer, discarding the signals of the physical layer. This paper proposes a zero-forcing and an interference cancellation receiver architecture for an RFID reader, to recover from collisions of two tags on a physical layer and identify tags successfully even in case of a collision. The expected throughput increase is approximately 1.6 times the throughput of a conventional reader. We explore the signal properties of collisions and propose a model for the physical layer. Moreover, we present a method for estimating the signal constellation states in a collision. The entire structure, including channel estimation and both of the proposed receivers are verified with data generated during a measurement. Additionally, performance simulations of the two structures with different channels are shown.

Published in:

Industrial Technology (ICIT), 2010 IEEE International Conference on

Date of Conference:

14-17 March 2010