Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Security-aware routing and localization for a directional mission critical network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Okorafor, U.N. ; Texas Instrum., Inc., Dallas, TX, USA ; Kundur, D.

There has been recent interest in the development of untethered sensor nodes that communicate directionally via free space optical communications for mission critical settings in which high-speed link guarantees in hostile environments are needed. Directional wireless optical sensor networks have the potential to provide gigabits per second speeds for relatively low power consumption enabling bursty traffic and longer network lifetimes. In randomly deployed sensor settings, the crucial steps of ad hoc route setup and node localization are not only nontrivial, but also vulnerable to security attacks. In response to these challenges, this paper proposes a lightweight security-aware integrated routing and localization approach that exploits the benefits of link directionality inherent to wireless optical sensor networks. The circuit-based algorithm that makes use of directional routing loops, called SIRLoS, leverages the resources of the base station and a hierarchical network structure to identify topological information and detect security violations in neighborhood discovery and routing mechanisms. We study the performance of the SIRLoS algorithm demonstrating that reduced localization error, routing overhead, and likelihood of attack in various contexts are possible within lightweight computational constraints.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 5 )