By Topic

Data Aggregation based Adaptive Long term load Prediction mechanism in Grid environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fang Dong ; School of Computer Science and Engineering, Southeast University, Nanjing, P.R. China ; Junzhou Luo ; Jinhui Zhang ; Aibo Song
more authors

In recent years, as a popular technique to support CSCW, Grid computing is becoming more and more attractive. Hereinto, as the CPU load information can guide task scheduling process greatly, the long-term CPU load prediction becomes a very hot research field and has been widely studied. However, as the prediction errors will be accumulated gradually and meanwhile the relevant parameters' optimal values may change dynamically with the variance of load series, the previous prediction algorithms usually can not obtain good prediction accuracy when the length of prediction interval is quite large. To address these feature, a Data Aggregation based Adaptive Long term load Prediction mechanism called DA2LP is proposed in this paper. Therein, in order to reduce the number of prediction step and increase the amount of useful input load information, the data aggregation concept is introduced to integrate with AR model. Meanwhile, with the observation and analysis of the relevant parameters' impact on prediction accuracy in our prediction model, an adaptive parameter selection mechanism is proposed, where the optimal relevant parameters can be adapted automatically to enhance prediction accuracy during the prediction process. The experiments show that our proposed mechanism can outperform significantly the previous prediction methods in mean square error (MSE) for long term load prediction.

Published in:

Computer Supported Cooperative Work in Design (CSCWD), 2010 14th International Conference on

Date of Conference:

14-16 April 2010