By Topic

Reversible Parallel Discrete-Event Execution of Large-Scale Epidemic Outbreak Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Perumalla, K.S. ; Oak Ridge Nat. Lab., Oak Ridge, TN, USA ; Seal, S.K.

The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over the ¿sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene/P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.

Published in:

Principles of Advanced and Distributed Simulation (PADS), 2010 IEEE Workshop on

Date of Conference:

17-19 May 2010