By Topic

Microwave silicon on insulator-based design of a power management system for jet propulsion laboratory's rechargeable micro-scale batteries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alahmad, M. ; Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Hess, H.

In the area of power storage for aerospace applications, Jet Propulsion Laboratory, California Institute of Technology, has developed an all solid-state rechargeable micro-scale lithium ion battery cell (micro-battery) rated at 4.25 V, with nano-Ampere hour capacity. One of the advantages of this development is the ability to fabricate approximately 20 000 individual micro-battery cells adjacent to each other on the same four-inch silicon wafer. To take advantage of a pre/post-fabricated series, parallel or series/parallel connection of the cells, a power management system has been developed and sub-system circuits designed using a combination of device and circuit techniques meeting high voltage switching requirements in silicon on insulator (SOI) technology to reconfigure and control the charge/discharge operation of the cells for practical application. This study will present a detailed analysis of the power management system and its sub-circuit components. The circuit components have been simulated using 3.3 V SOI SPICE models and have been fabricated in a 0.35 m Microwave SOI process. A description of the system and the results will also be discussed and analysed.

Published in:

Circuits, Devices & Systems, IET  (Volume:4 ,  Issue: 3 )