By Topic

Tracking Endocardial Motion Via Multiple Model Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Punithakumar, K. ; GE Healthcare, London, ON, Canada ; Ben Ayed, I. ; Islam, A. ; Ross, I.G.
more authors

Tracking heart motion plays an essential role in the diagnosis of cardiovascular diseases. As such, accurate characterization of dynamic behavior of the left ventricle (LV) is essential in order to enhance the performance of motion estimation. However, a single Markovian model is not sufficient due to the substantial variability in typical heart motion. Moreover, dynamics of an abnormal heart could be very different from that of a normal heart. This study introduces a tracking approach based on multiple models, each matched to a different phase of the LV motion. First, the algorithm adopts a graph cut distribution matching method to tackle the problem of segmenting LV cavity from cardiac MR images, which is acknowledged as a difficult problem because of low contrast and photometric similarities between the heart wall and papillary muscles within the LV cavity. Second, interacting multiple model (IMM), an effective estimation algorithm for Markovian switching system, is devised subsequent to the segmentations to yield state estimates of the endocardial boundary points. The IMM also yields the model probability indicating the model that most closely matches the LV motion. The proposed method is evaluated quantitatively by comparison with independent manual segmentations over 2280 images acquired from 20 subjects, which demonstrated competitive results in comparisons with related recent methods.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 8 )