By Topic

Observer-Based Control of Discrete-Time LPV Systems With Uncertain Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heemels, W.P.M.H. ; Dept. of Mech. Eng., Eindhoven Univ. of Technol., Eindhoven, Netherlands ; Daafouz, J. ; Millerioux, G.

In this note, linear matrix inequality-based design conditions are presented for observer-based controllers that stabilize discrete-time linear parameter-varying systems in the situation where the parameters are not exactly known, but are only available with a finite accuracy. The presented framework allows to make tradeoffs between the admissible level of parameter uncertainty on the one hand and the transient performance on the other. In addition, the level of parameter uncertainty can be maximized while still guaranteeing closed-loop stability.

Published in:

Automatic Control, IEEE Transactions on  (Volume:55 ,  Issue: 9 )