By Topic

Decentralized Demand-Side Contribution to Primary Frequency Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Molina-Garciá, A. ; Dept. of Electr. Eng., Tech. Univ. of Cartagena, Cartagena, Spain ; Bouffard, F. ; Kirschen, D.S.

Frequency in large power systems is usually controlled by adjusting the production of generating units in response to changes in the load. As the amount of intermittent renewable generation increases and the proportion of flexible conventional generating units decreases, a contribution from the demand side to primary frequency control becomes technically and economically desirable. One of the reasons why this has not been done was the perceived difficulties in dealing with many small loads rather than a limited number of generating units. In particular, the cost and complexity associated with two-way communications between many loads and the control center appeared to be insurmountable obstacles. This paper argues that this two-way communication is not essential and that the demand can respond to the frequency error in a manner similar to the generators. Simulation results show that, using this approach, the demand side can make a significant and reliable contribution to primary frequency response while preserving the benefits that consumers derive from their supply of electric energy.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 1 )