By Topic

Designing Interactions for Robot Active Learners

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maya Cakmak ; School of Interactive Computing, and the Robotics and Intelligent Machines Center, Georgia Institute of Technology, Atlanta, GA, USA ; Crystal Chao ; Andrea L. Thomaz

This paper addresses some of the problems that arise when applying active learning to the context of human-robot interaction (HRI). Active learning is an attractive strategy for robot learners because it has the potential to improve the accuracy and the speed of learning, but it can cause issues from an interaction perspective. Here we present three interaction modes that enable a robot to use active learning queries. The three modes differ in when they make queries: the first makes a query every turn, the second makes a query only under certain conditions, and the third makes a query only when explicitly requested by the teacher. We conduct an experiment in which 24 human subjects teach concepts to our upper-torso humanoid robot, Simon, in each interaction mode, and we compare these modes against a baseline mode using only passive supervised learning. We report results from both a learning and an interaction perspective. The data show that the three modes using active learning are preferable to the mode using passive supervised learning both in terms of performance and human subject preference, but each mode has advantages and disadvantages. Based on our results, we lay out several guidelines that can inform the design of future robotic systems that use active learning in an HRI setting.

Published in:

IEEE Transactions on Autonomous Mental Development  (Volume:2 ,  Issue: 2 )