By Topic

Transition to a Two-Level Linear State Estimator—Part II: Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang, Tao ; Washington State Univ., Pullman, WA, USA ; Hongbin Sun ; Bose, A.

The availability of synchro-phasor data has raised the possibility of a linear state estimator if the inputs are only complex currents and voltages and if there are enough such measurements to meet observability and redundancy requirements. Moreover, the new digital substations can perform some of the computation at the substation itself resulting in a more accurate two-level state estimator. The main contribution in this paper is that this two-level processing removes the bad data and topology errors, which are major problems today, at the substation level. In Part I of the paper, we describe the layered architecture of databases, communications, and the application programs that are required to support this two-level linear state estimator. In Part II, we describe the mathematical algorithms that are different from those in the existing literature. As the availability of phasor measurements at substations will increase gradually, this paper describes how the state estimator can be enhanced to handle both the traditional state estimator and the proposed linear state estimator simultaneously. This provides a way to immediately utilize the benefits in those parts of the system where such phasor measurements become available and provides a pathway to transition to the "smart" grid of the future.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 1 )