By Topic

Performance evaluation of a Green Scheduling Algorithm for energy savings in Cloud computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Truong Vinh Truong Duy ; Grad. Sch. of Inf. Sci., Japan Adv. Inst. of Sci. & Technol., Ishikawa, Japan ; Sato, Y. ; Inoguchi, Y.

With energy shortages and global climate change leading our concerns these days, the power consumption of datacenters has become a key issue. Obviously, a substantial reduction in energy consumption can be made by powering down servers when they are not in use. This paper aims at designing, implementing and evaluating a Green Scheduling Algorithm integrating a neural network predictor for optimizing server power consumption in Cloud computing. We employ the predictor to predict future load demand based on historical demand. According to the prediction, the algorithm turns off unused servers and restarts them to minimize the number of running servers, thus minimizing the energy use at the points of consumption to benefit all other levels. For evaluation, we perform simulations with two load traces. The results show that the PP20 mode can save up to 46.3% of power consumption with a drop rate of 0.03% on one load trace, and a drop rate of 0.12% with a power reduction rate of 46.7% on the other.

Published in:

Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010