By Topic

Throughput optimization for micro-factories subject to task and machine failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Benoit, A. ; LIP Lab., Univ. de Lyon, Lyon, France ; Dobrila, A. ; Nicod, J. ; Philippe, L.

In this paper, we study the problem of optimizing the throughput for micro-factories subject to failures. The challenge consists in mapping several tasks of different types onto a set of machines. The originality of our approach is the failure model for such applications in which not only the machines are subject to failures but the reliability of a task may depend on its type. The failure rate is unrelated: a probability of failure is associated to each couple (task type, machine). We consider different kind of mappings: in one-to-one mappings, each machine can process only a single task, while several tasks of the same type can be processed by the same machine in specialized mappings. Finally, general mappings have no constraints. The optimal one-to-one mapping can be found in polynomial time for particular problem instances, but the problem is NP-hard in most of the cases. For the most realistic case of specialized mappings, which turns out to be NP-hard, we design several polynomial time heuristics and a linear program allows us to find the optimal solution (in exponential time) for small problem instances. Experimental results show that the best heuristics obtain a good throughput, much better than the throughput achieved with a random mapping. Moreover, we obtain a throughput close to the optimal solution in the particular cases where the optimal throughput can be computed.

Published in:

Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010