By Topic

Managing large-scale utility cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schwan, K. ; Georgia Tech, Atlanta, GA, USA ; Eisenhauer, G. ; Gavrilovska, A. ; Wolf, M.
more authors

Summary form only given. To effectively manage large-scale data centers and utility clouds, operators must understand current system and application behaviors. This requires continuous monitoring along with online analysis of the data captured by the monitoring system. As a result, there is a need to move to systems in which both tasks can be performed in an integrated fashion, thereby better able to drive online system management. Coining the term `monalytics' to refer to the combined monitoring and analysis systems used for managing large-scale data center systems, this talk articulates principles for monalytics systems, describes software approaches for implementing them, and provides experimental evaluations justifying principles and implementation approach. Specific technical contributions include consideration of scalability across both `space' and `time', the ability to dynamically deploy and adjust monalytics functionality at multiple levels of abstraction in target systems, and the capability to operate across the range of application to hypervisor layers present in large-scale data center or cloud computing systems. Our monalytics implementation targets virtualized systems and cloud infrastructures, via the integration of its functionality into the Xen hypervisor.

Published in:

Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010