By Topic

A configurable-hardware document-similarity classifier to detect web attacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ulmer, C. ; Sandia Nat. Labs., Livermore, CA, USA ; Gokhale, M.

This paper describes our approach to adapting a text document similarity classifier based on the Term Frequency Inverse Document Frequency (TFIDF) metric to reconfigurable hardware. The TFIDF classifier is used to detect web attacks in HTTP data. In our reconfigurable hardware approach, we design a streaming, real-time classifier by simplifying an existing sequential algorithm and manipulating the classifier's model to allow decision information to be represented compactly. We have developed a set of software tools to help automate the process of converting training data to synthesizable hardware and to provide a means of trading off between accuracy and resource utilization. The Xilinx Virtex 5-LX implementation requires two orders of magnitude less memory than the original algorithm. At 166MB/s (80X the software) the hardware implementation is able to achieve Gigabit network throughput at the same accuracy as the original algorithm.

Published in:

Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010