By Topic

Direct self-consistent field computations on GPU clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guochun Shi ; Nat. Center for Supercomput. Applic., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Kindratenko, V. ; Ufimtsev, I. ; Martinez, T.

We present an implementation of one of the direct self-consistent-field (DSCF) calculation techniques, the restricted Hartree-Fock method, on a high-performance computing cluster outfitted with graphics processing units (GPUs) and demonstrate its effectiveness and scalability up to 128 cluster nodes on molecules of as many as 1,732 atoms. We discuss the overall parallel application architecture that relies on message passing interface for distributing workload among GPU cluster nodes and POSIX threads to manage the use of GPUs internal to each node. This approach of combining coarse and fine-grain parallelism on a distributed memory system allows to perform DSCF calculations on molecules that up until now have been unattainable due to the excessive computational requirements.

Published in:

Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010