By Topic

Analyzing and adjusting user runtime estimates to improve job scheduling on the Blue Gene/P

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Tang ; Dept. of Comput. Sci., Illinois Inst. of Technol., Chicago, IL, USA ; Desai, N. ; Buettner, D. ; Zhiling Lan

Backfilling and short-job-first are widely acknowledged enhancements to the simple but popular first-come, first-served job scheduling policy. However, both enhancements depend on user-provided estimates of job runtime, which research has repeatedly shown to be inaccurate. We have investigated the effects of this inaccuracy on backfilling and different queue prioritization policies, determining which part of the scheduling policy is most sensitive. Using these results, we have designed and implemented several estimation-adjusting schemes based on historical data. We have evaluated these schemes using workload traces from the Blue Gene/P system at Argonne National Laboratory. Our experimental results demonstrate that dynamically adjusting job runtime estimates can improve job scheduling performance by up to 20%.

Published in:

Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010