Cart (Loading....) | Create Account
Close category search window
 

Oversubscription on multicore processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Iancu, C. ; Lawrence Berkeley Nat. Lab., Berkeley, CA, USA ; Hofmeyr, S. ; Blagojevic, F. ; Yili Zheng

Existing multicore systems already provide deep levels of thread parallelism; hybrid programming models and composability of parallel libraries are very active areas of research within the scientific programming community. As more applications and libraries become parallel, scenarios where multiple threads compete for a core are unavoidable. In this paper we evaluate the impact of task oversubscription on the performance of MPI, OpenMP and UPC implementations of the NAS Parallel Benchmarks on UMA and NUMA multi-socket architectures. We evaluate explicit thread affinity management against the default Linux load balancing and discuss sharing and partitioning system management techniques. Our results indicate that oversubscription provides beneficial effects for applications running in competitive environments. Sharing all the available cores between applications provides better throughput than explicit partitioning. Modest levels of oversubscription improve system throughput by 27% and provide better performance isolation of applications from their co-runners: best overall throughput is always observed when applications share cores and each is executed with multiple threads per core. Rather than ??resource?? symbiosis, our results indicate that the determining behavioral factor when applications share a system is the granularity of the synchronization operations.

Published in:

Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.