By Topic

Parallel computation of best connections in public transportation networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Delling, D. ; Microsoft Res. Silicon Valley, Mountain View, CA, USA ; Katz, B. ; Pajor, T.

Exploiting parallelism in route planning algorithms is a challenging algorithmic problem with obvious applications in mobile navigation and timetable information systems. In this work, we present a novel algorithm for the so-called one-to-all profile-search problem in public transportation networks. It answers the question for all fastest connections between a given station S and any other station at any time of the day in a single query. This algorithm allows for a very natural parallelization, yielding excellent speed-ups on standard multi-core servers. Our approach exploits the facts that first, time-dependent travel-time functions in such networks can be represented as a special class of piecewise linear functions, and that second, only few connections from S are useful to travel far away. Introducing the connection-setting property, we are able to extend DIJKSTRA's algorithm in a sound manner. Furthermore, we also accelerate station-tostation queries by preprocessing important connections within the public transportation network. As a result, we are able to compute all relevant connections between two random stations in a complete public transportation network of a big city (Los Angeles) on a standard multi-core server in less than 55 ms on average.

Published in:

Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010