By Topic

Approximating stochastic biochemical processes with wasserstein pseudometrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Thorsley ; Department of Electrical Engineering, University of Washington ; E. Klavins

Modelling stochastic processes inside the cell is difficult due to the size and complexity of the processes being investigated. As a result, new approaches are needed to address the problems of model reduction, parameter estimation, model comparison and model invalidation. Here, the authors propose addressing these problems by using Wasserstein pseudometrics to quantify the differences between processes. The method the authors propose is applicable to any bounded continuous-time stochastic process and pseudometrics between processes are defined only in terms of the available outputs. Algorithms for approximating Wasserstein pseudometrics are developed from experimental or simulation data and demonstrate how to optimise parameter values to minimise the pseudometrics. The approach is illustrated with studies of a stochastic toggle switch and of stochastic gene expression in E. coli.

Published in:

IET Systems Biology  (Volume:4 ,  Issue: 3 )