Cart (Loading....) | Create Account
Close category search window

Properties and performance bounds of linear analog block codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rùˆngeler, M. ; Inst. of Commun. Syst. & Data Process., RWTH Aachen Univ., Aachen, Germany ; Schotsch, B. ; Vary, P.

Linear analog block codes have been considered for transmission of discrete-time and continuous-amplitude data. In this paper, the fidelity measure parameter SNR (pSNR) at the receiver is derived for an arbitrary generator matrix P using an additive white Gaussian noise (AWGN) channel. In contrast, it is shown that the performance of linear analog block codes is dependent on the eigenvalues of the matrix PTP and not only on the dimensions of the matrix P. Surprisingly, the quality of the received values is independent of the code rate r, and e.g. a simple identity matrix has the optimal eigenvalues. Furthermore, the theoretical fidelity bound OPTA (Optimum Performance Theoretically Attainable) is used to assess the performance of a transmission system of continuous-amplitude data.

Published in:

Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on

Date of Conference:

1-4 Nov. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.