By Topic

Diffusion distributed Kalman filtering with adaptive weights

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cattivelli, F. ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Sayed, A.H.

We study the problem of distributed Kalman filtering, where a set of nodes are required to collectively estimate the state of a linear dynamic system from their measurements. In diffusion Kalman filtering strategies, neighboring state estimates are linearly combined using a set of scalar weights. In this work we show how to optimally select the weights, and propose an adaptive algorithm to adapt them using local information at every node. The algorithm is fully distributed and runs in real time, with low processing complexity. Our simulation results show performance improvement in comparison to the case where fixed, non-adaptive weights are used.

Published in:

Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on

Date of Conference:

1-4 Nov. 2009