By Topic

Towards radix-4, parallel interleaver design to support high-throughput turbo decoding for re-configurability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Asghar, R. ; Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden ; Liu, D.

Parallel, radix-4 turbo decoding is used to enhance the throughput and at the same time reduce the overall memory cost. The bottleneck is the higher complexity associated with radix-4 parallel interleaver implementation. This paper addresses the implementation issues of radix-4, parallel interleaver and also proposes necessary modifications in the interleaver algorithms for parallel address generation. It presents a re-configurable architecture which enables the use of same turbo decoding core to be used for multiple standards. The proposed interleaver architecture is capable of handling the memory conflicts on-the-fly. It consumes 12.5K gates and can run at a frequency of 285MHz, thus supporting a throughput of 173.3Mpbs, which can cover most of the emerging communication standards.

Published in:

Sarnoff Symposium, 2010 IEEE

Date of Conference:

12-14 April 2010