Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Capturing dynamics on multiple time scales: A hybrid approach for cluttered electromagnetic data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pawley, N.H. ; Los Alamos Nat. Lab., Los Alamos, NM, USA ; Myers, K.L. ; Galbraith, J.M. ; Brumby, S.P.

Many problems in electromagnetic signal analysis exhibit dynamics on a wide range of time scales against nonstationary clutter and noise. We consider a problem in which the relevant time scales can range from nanoseconds to hours or days (12 or 13 orders of magnitude). We present a hybrid algorithm currently designed to capture the dynamic behavior at scales from nanoseconds to milliseconds (6 orders of magnitude) while remaining robust to clutter and noise. We draw from techniques of adaptive feature extraction, statistical machine learning, and discrete process modeling and present results on a simulated multimode problem. Our goals are to find a representation of the signal that allows us to identify which pulses were produced by a target emitter and to determine the operational mode of the target.

Published in:

Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on

Date of Conference:

1-4 Nov. 2009