By Topic

Snake head boundary extraction using global and local energy minimisation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gunn, S.R. ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Nixon, M.S.

Snakes are now a very popular technique for shape extraction by minimising a suitably formulated energy functional. A dual snake configuration using dynamic programming has been developed to locate a global energy minimum. This complements recent approaches to global energy minimisation via simulated annealing and genetic algorithms. These differ from a conventional evolutionary snake approach, where an energy function is minimised according to a local optimisation strategy and may not converge to extract the target shape, in contrast with the guaranteed convergence of a global approach. The new technique employing dynamic programming is deployed to extract the inner face boundary, along with a conventional normal-driven technique to extract the outer face boundary. Application to a database of 75 subjects showed that the outer contour was extracted successfully for 96% of the subjects and the inner contour was successful for 82%. The results demonstrated the benefits that could accrue from inclusion of face features, giving an appropriate avenue for future research

Published in:

Pattern Recognition, 1996., Proceedings of the 13th International Conference on  (Volume:2 )

Date of Conference:

25-29 Aug 1996