By Topic

Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films With Perpendicular Magnetic Anisotropy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. R. Skuza$^{1}$Department of Physics, , College of William and Mary, , Williamsburg,, VA, USA ; C. Clavero ; K. Yang ; B. Wincheski
more authors

L10 order was optimized in FePd epitaxial thin films prepared using dc magnetron sputter deposition on MgO(001) substrates by investigating various growth temperatures. A series of films was grown at the optimal temperature with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured magnetic domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.

Published in:

IEEE Transactions on Magnetics  (Volume:46 ,  Issue: 6 )