By Topic

Fabrication, Magnetic, and R/W Properties of Nitrogen-Ion-Implanted Co/Pd and CoCrPt Bit-Patterned Medium

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Antony Ajan$^{1}$Fujitsu Laboratories Ltd.,, Atsugi, Kanagawa, Japan ; Kenji Sato ; Nobuhide Aoyama ; Tsutomu Tanaka
more authors

A method of making a cost-effective bit-patterned medium combining: 1) a pattern imprint; 2) ion doping; and 3) an ashing process is described. The Nitrogen ion was doped to change the magnetic properties of the Co/Pd and CoCrPt magnetic layer. The Nitrogen ion induces surface and lattice, and the exchange coupling strength changes during doping which suppress the magnetization and anisotropy of Co/Pd and CoCrPt magnetic layers. This can be achieved at relatively lower dosages so that a subsequent ashing process creates a smooth surface. The thermal stability of doped film and dot was good for practical applications. Monte-Carlo simulations were used to estimate the lateral ionic distribution within the dot region and compared with magnetic-force microscopy. To demonstrate this technique, areal densities of 134 Gb/in2 on Co/Pd media and 250 Gb/in2 on CoCrPt media are shown.

Published in:

IEEE Transactions on Magnetics  (Volume:46 ,  Issue: 6 )