By Topic

Understanding Noise Mechanism in Small Grain Size Perpendicular Thin Film Media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, Yiming ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Zhu, Jian-Gang

One of the myths of today's perpendicular thin film media is that there is no noticeable gain in medium signal-to-noise ratio (SNR) as grain size reduces below 8 nm. A recent experimental study shows that intergranular exchange coupling exhibits an exponential dependence of the oxide grain boundary thickness for the thickness below 1 nanometer. In this paper, we present a systematic micromagnetic modeling analysis regarding the effect of spatially random intergranular exchange coupling due to the variation in grain boundary thickness. As oxide boundary becomes sufficiently thin in small grain size media, a distribution in the grain boundary thickness is found to cost significant SNR loss according to simulation results.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 6 )