Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Initial Rotor Position and Magnetic Polarity Identification of PM Synchronous Machine Based on Nonlinear Machine Model and Finite Element Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yi Wang ; Sch. of Electr., Mech. & Mechatron. Syst., Univ. of Technol., Sydney, NSW, Australia ; Ningning Guo ; Jianguo Zhu ; Nana Duan
more authors

In this paper, a DC voltage pulse injection based method is proposed to detect the initial position and rotor polarity of permanent magnet synchronous motor (PMSM). The rotor angle vibration is expressed analytically as a function of the injected pulse. The nonlinear numerical simulation model of PMSM is employed, in which the saturation saliency is incorporated as well as the structural saliency. The proposed scheme is simulated and verified by using the nonlinear model and a 2-D finite element method (FEM) algorithm, respectively. The initial position detection is tested at different starting positions and the results show that the proposed scheme can be used to identify the PMSM initial rotor position.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 6 )