Cart (Loading....) | Create Account
Close category search window

Adjusting Electrode Potentials to Compensate Thermal/Tissue Effects in Deep Brain Stimulation via Finite Element Electromagnetic Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Yi Chuang ; Dept. of Electr. Eng., Nat. Chiao-Tung Univ., Hsinchu, Taiwan ; Chao, P.C.-P. ; Kuu-Young Young

The proposed method is intended to adjust the electrode potentials used in deep brain stimulation (DBS) with the consideration of both tissue transform and thermal effects caused by stimulation. During a typical DBS process, it is essential, for an effective treatment, to control the stimulation strength and region with varied applied electrode potentials. Some previous studies have been devoted for numerical simulations to find suitable electrode voltage levels for pre-desired stimulated strength and region. These studies consider only one of the two complexity factors due to the intrusion of the DBS lead: 1) a layer of extracellular fluid and giant cell often formed around the DBS leads, called the peri-electrode space and 2) thermal effects. These two factors should both be considered in finite element electromagnetic analysis (FEA), which provides the means to adjust electrode potential for the originally-desired DBS region-called the volume of tissue activated (VTA). Simulation results show that there should be a limiting stimulation voltage to meet the temperature constraint.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 6 )

Date of Publication:

June 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.