Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Induction Machine Modeling Approach Based on 3-D Magnetic Equivalent Circuit Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amrhein, M. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Krein, P.T.

Developments in power electronics technology, materials, and changing application requirements are driving advances in electric machines. Limitations of standard motor design, particularly for induction machines, restrict performance capabilities in drive applications. Current computer-aided design tools are inadequate to overcome these limitations. Lumped-parameter and finite-element models have limited accuracy and heavy computational effort, respectively. Magnetic equivalent circuits (MEC) avoid these limitations. This paper presents an induction machine MEC model geared toward design and based on a 3-D MEC framework introduced in previous work. A matrix formulation suitable for computation is described. Details of mesh generation for the MEC approach are provided. Force and performance estimation are discussed. Simulations based on this approach are able to track dynamic effects, such as rotor slot torque ripple contributions. Comparisons are made to a 500 W purpose-built machine. Results from lumped-parameter and finite-element models and measurements indicate that MECs, corrected for local saturation, are a promising option for design tools.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:25 ,  Issue: 2 )