By Topic

SOS-Based Stability Analysis of Polynomial Fuzzy-Model-Based Control Systems Via Polynomial Membership Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Narimani, M. ; Div. of Eng., King''s Coll. London, London, UK ; Lam, H.K.

This paper presents stability analysis of polynomial fuzzy-model-based (FMB) control systems using the sum-of-squares (SOS) approach. Recently, stability analysis of the polynomial fuzzy-control systems, which is a generalized form of the well-known Takagi-Sugeno (T-S) FMB control systems, has been reported in the form of SOS-based stability conditions. Lack of information on the relations between membership functions and premise variables, in the existing stability analysis approaches, causes conservatism of their results. In this paper, to derive relaxed stability conditions for polynomial FMB control systems, membership functions which are approximated with polynomials and carrying relations between membership functions and premise variables are brought into the stability analysis. Considering a polynomial FMB control system and based on the Lyapunov stability theory, stability conditions in the form of fuzzy summations are derived, where each term contains product of membership functions of the polynomial fuzzy model and polynomial fuzzy controller. Each product term is approximated by a polynomial. In order to obtain better approximation, the operating domain of membership functions is partitioned to subregions. Then, SOS-based stability conditions for all subregions are derived. Unlike some published stability-analysis approaches, the proposed one can be employed for stability analysis of polynomial fuzzy-control systems under imperfect premise matching of which the fuzzy model and fuzzy controller do not share the same membership functions. The solution of the SOS-based stability conditions can be found numerically using SOSTOOLS, which is a free third-party MATLAB Toolbox. Numerical examples are given to illustrate the effectiveness of the proposed stability conditions.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 5 )