By Topic

FPGA-Based Intelligent-Complementary Sliding-Mode Control for PMLSM Servo-Drive System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Central Univ., Chungli, Taiwan ; Jonq-Chin Hwang ; Po-Huan Chou ; Ying-Chih Hung

A field-programmable gate array (FPGA)-based intelligent-complementary sliding-mode control (ICSMC) is proposed in this paper to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo-drive system to track periodic-reference trajectories. First, the dynamics of the field-oriented control PMLSM servo drive with a lumped uncertainty, which contains parameter variations, external disturbances, and nonlinear-friction force, is derived. Then, to achieve the required high-control performance, the ICSMC is developed. In this approach, a radial-basis function-network (RBFN) estimator with accurate approximation capability is employed to estimate the lumped uncertainty directly. Moreover, the adaptive-learning algorithms for the online training of the RBFN are derived using the Lyapunov theorem to guarantee the closed-loop stability. Furthermore, the FPGA chip is adopted to implement the developed control and online learning algorithms for possible low-cost and high-performance industrial applications using PMLSM. Finally, some experimental results are illustrated to show the validity of the proposed control approach.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 10 )