By Topic

Edge Detecting for Range Data Using Laplacian Operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sonya A. Coleman ; University of Ulster, Londonderry, UK ; Bryan W. Scotney ; Shanmugalingam Suganthan

Feature extraction in image data has been investigated for many years, and more recently the problem of processing images containing irregularly distributed data has become prominent. Range data are now commonly used in the areas of image processing and computer vision. However, due to the data irregularity found in range images that occurs with a variety of image sensors, direct image processing, in particular edge detection, is a nontrivial problem. Typically, irregular range data would require to be interpolated to a regular grid prior to processing. One example of an edge detection technique that can be directly applied to range images is the scan-line approximation, but this does not employ exact data locations. Therefore, we present novel Laplacian operators that can be applied directly to irregularly distributed data, and in particular we focus on application to irregularly distributed 3-D range data for the purpose of edge detection. Within the data distribution framework commonly occurring in range data acquisition devices, our results illustrate that the approach works well over a range of levels of irregularity of data distribution. The use of Laplacian operators on range data is also found to be much less susceptible to noise than the traditional use of Laplacian operators on intensity images.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 11 )