By Topic

Automated Derivation of Application-Specific Error Detectors Using Dynamic Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pattabiraman, K. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Saggese, G.P. ; Chen, D. ; Kalbarczyk, Z.
more authors

This paper proposes a novel technique for preventing a wide range of data errors from corrupting the execution of applications. The proposed technique enables automated derivation of fine-grained, application-specific error detectors based on dynamic traces of application execution. The technique derives a set of error detectors using rule-based templates to maximize the error detection coverage for the application. A probability model is developed to guide the choice of the templates and their parameters for error-detection. The paper also presents an automatic framework for synthesizing the set of detectors in hardware to enable low-overhead, runtime checking of the application. The coverage of the derived detectors is evaluated using fault-injection experiments, while the performance and area overheads of the detectors are evaluated by synthesizing them on reconfigurable hardware.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:8 ,  Issue: 5 )