Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

LBMP: A Logarithm-Barrier-Based Multipath Protocol for Internet Traffic Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ke Xu ; Dept. of Comput. Sci., Tsinghua Univ., Beijing, China ; Hongying Liu ; Jiangchuan Liu ; Jixiu Zhang

Traffic management is the adaptation of source rates and routing to efficiently utilize network resources. Recently, the complicated interactions between different Internet traffic management modules have been elegantly modeled by distributed primal-dual utility maximization, which sheds new light for developing effective management protocols. For single-path routing with given routes, the dual is a strictly concave network optimization problem. Unfortunately, the general form of multipath utility optimization is not strictly concave, making its solution quite unstable. Decomposition-based techniques like TRaffic-management Using Multipath Protocol (TRUMP) alleviates the instability, but their convergence is not guaranteed, nor is their optimality. They are also inflexible in differentiating the control at different links. In this paper, we address the above issues through a novel logarithm-barrier-based approach. Our approach jointly considers user utility and routing/congestion control. It translates the multipath utility maximization into a sequence of unconstrained optimization problems, with infinite logarithm barriers being deployed at the constraint boundary. We demonstrate that setting up barriers is much simpler than choosing traditional cost functions and, more importantly, it makes optimal solution achievable. We further demonstrate a distributed implementation, together with the design of a practical Logarithm Barrier-based-Multipath Protocol (LBMP). We evaluate the performance of LBMP through both numerical analysis and packet-level simulations. The results show that LBMP achieves high throughput and fast convergence over diverse representative network topologies. Such performance is comparable to TRUMP, and is often better. Moreover, LBMP is flexible in differentiating the control at different links, and its optimality and convergence are theoretically guaranteed.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 3 )